Wahrend meiner Promotionszeit an der Christian-Albrechts-Universitat zu Kiel hielt Salvatore Siciliano einen anregenden Vortrag im Oberseminar Algebrentheorie"e; zu Cartan-Teilalgebren in Lie-Algebren assoziiert zu assoziativen Algebren. Dieser Vortrag war fur mich der Anreiz, mich naher mit maximal nilpotenten Teilstrukturen der assoziierten Lie-Algebra zu beschaftigen. In dem vorliegenden Buch werden wir Sicilianos Theorie zu Cartan-Teilalgebren aufarbeiten und auf verschiedene spezielle assoziative Algebrenklassen ausdehnen. Zusatzlich werden wir eine zweite maximal nilpotente Teilstruktur, namlich das Nilradikal, in der assoziierten Lie-Algebra analysieren und beschreiben. Bei den Analysen steht der Gedanke im Vordergrund, diese ausgezeichneten Teilstrukturen der Lie-Algebra mithilfe der assoziativen Struktur der Ausgangsalgebra zu identifizieren. Dies wird in diesem Werk erfolgreich umgesetzt. Zahlreiche Beispiele (u.a. ausgehend von Gruppenalgebren und von Solomon-(Tits-)-Algebren) illustrieren dem_der Leser_in die Ergebnisse. Diese_r kann wiederum in den zahlreichen 348 Ubungsaufgaben das Gelernte selbst anwenden.
Während meiner Promotionszeit an der Christian-Albrechts-Universität zu Kiel hielt Salvatore Siciliano einen anregenden Vortrag im Oberseminar "Algebrentheorie" zu Cartan-Teilalgebren in Lie-Algebren assoziiert zu assoziativen Algebren. Dieser Vortrag war für mich der Anreiz, mich näher mit maximal nilpotenten Teilstrukturen der assoziierten Lie-Algebra zu beschäftigen. In dem vorliegenden Buch werden wir Sicilianos Theorie zu Cartan-Teilalgebren aufarbeiten und auf verschiedene spezielle assoziative Algebrenklassen ausdehnen. Zusätzlich werden wir eine zweite maximal nilpotente Teilstruktur, nämlich das Nilradikal, in der assoziierten Lie-Algebra analysieren und beschreiben. Bei den Analysen steht der Gedanke im Vordergrund, diese ausgezeichneten Teilstrukturen der Lie-Algebra mithilfe der assoziativen Struktur der Ausgangsalgebra zu identifizieren. Dies wird in diesem Werk erfolgreich umgesetzt. Zahlreiche Beispiele (u.a. ausgehend von Gruppenalgebren und von Solomon-(Tits-)-Algebren) illustrieren dem_der Leser_in die Ergebnisse. Diese_r kann wiederum in den zahlreichen 348 Übungsaufgaben das Gelernte selbst anwenden.